January 1993 Revised August 2000

### FAIRCHILD

SEMICONDUCTOR

## SCAN182541A **Non-Inverting Line Driver** with 25 $\Omega$ Series Resistor Outputs

#### **General Description**

The SCAN182541A is a high performance BiCMOS line driver featuring separate data inputs organized into dual 9bit bytes with byte-oriented paired output enable control signals. This device is compliant with IEEE 1149.1 Standard Test Access Port and Boundary-Scan architecture with the incorporation of the defined Boundary-Scan test logic and test access port consisting of Test Data Input (TDI), Test Data Out (TDO), Test Mode Select (TMS), and Test Clock (TCK).

#### **Features**

- IEEE 1149.1 (JTAG) Compliant
- High performance BiCMOS technology
- $\blacksquare$  25 $\Omega$  series resistor outputs eliminate need for external terminating resistors
- Dual output enable signals per byte
- 3-STATE outputs for bus-oriented applications
- 25 mil pitch SSOP (Shrink Small Outline Package)
- Includes CLAMP, IDCODE and HIGHZ instructions
- Additional instructions SAMPLE-IN, SAMPLE-OUT and EXTEST-OUT

SCAN182541A Non-Inverting Line Driver with 25 $\Omega$  Series Resistor Outputs

- Power up 3-STATE for hot insert
- Member of Fairchild's SCAN Products

#### **Ordering Code:**

| Order Number              | Package<br>Number      | Package Description                                                   |
|---------------------------|------------------------|-----------------------------------------------------------------------|
| SCAN182541ASSC            | MS56A                  | 56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide |
| Devices also available in | Tape and Reel. Specify | by appending the suffix letter "X" to the ordering code.              |
| Connection                | Diagram                | Pin Descriptions                                                      |

#### Connection Diagram

| TMS —             |    | 56 TDI                      |
|-------------------|----|-----------------------------|
| A0 <sub>0</sub> — | 2  | 55 — Al <sub>o</sub>        |
| AOE -             | 3  | 54 - AOE                    |
| A01-              | 4  | 53 — Al <sub>1</sub>        |
| A02 -             | 5  | 52 Al2                      |
| GND —             | 6  | 5 I — GND                   |
| A03 —             | 7  | 50 — AI3                    |
| A04 -             | 8  | 49 AI4                      |
| v <sub>cc</sub> — | 9  | 48 — V <sub>CC</sub>        |
| A05 —             | 10 | 47 — Al <sub>5</sub>        |
| A0 <sub>6</sub> — | 11 | 46 — Al <sub>6</sub>        |
| GND —             | 12 | 45 — GND                    |
| A07 —             | 13 | 44 — Al <sub>7</sub>        |
| A0 <sub>8</sub> — | 14 | 43 — Al <sub>8</sub>        |
| во <sub>о</sub> — | 15 | 4 2 — Bl <sub>0</sub>       |
| во <sub>1</sub> — | 16 | 41 — BI <sub>1</sub>        |
| GND —             | 17 | 40 — GND                    |
| во <sub>2</sub> — | 18 | 39 <b>— BI</b> <sub>2</sub> |
| во3 —             | 19 | 38 — ві <sub>з</sub>        |
| v <sub>cc</sub> — | 20 | 37 — V <sub>CC</sub>        |
| во <sub>4</sub> — | 21 | 36 — BI <sub>4</sub>        |
| во <sub>5</sub> — | 22 | 35 — ВІ <sub>5</sub>        |
| GND —             | 23 | 34 — GND                    |
| во <sub>6</sub> — | 24 | зз — ві <sub>6</sub>        |
| во <sub>7</sub> — | 25 | 32 — ВІ <sub>7</sub>        |
| BOE1              | 26 | 31 BOE                      |
| во <sub>8</sub> — | 27 | 30 — BI <sub>8</sub>        |
| тво —             | 28 | 29 — ТСК                    |

#### Pin Descriptions

| Pin<br>Names                           | Description                              |
|----------------------------------------|------------------------------------------|
| AI <sub>(0-8)</sub>                    | Input Pins, A Side                       |
| BI <sub>(0-8)</sub>                    | Input Pins, B Side                       |
| AOE <sub>1</sub> ,<br>AOE <sub>2</sub> | 3-STATE Output Enable Input Pins, A Side |
| BOE <sub>1</sub> ,<br>BOE <sub>2</sub> | 3-STATE Output Enable Input Pins, B Side |
| AO <sub>(0-8)</sub>                    | Output Pins, A Side                      |
| BO <sub>(0-8)</sub>                    | Output Pins, B Side                      |

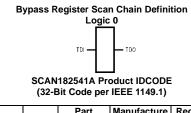
www.fairchildsemi.com

В

© 2000 Fairchild Semiconductor Corporation DS011543 SCAN182541A

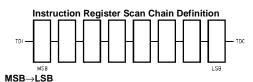
#### **Truth Tables** Inputs Inputs AO<sub>(0-8)</sub> BO<sub>(0-8)</sub> †AOE<sub>2</sub> †AOE₁ AI<sub>(0-8)</sub> †BOE<sub>1</sub> †BOE<sub>2</sub> BI<sub>(0-8)</sub> L L Н Н L L Н Н Ζ н Х Х н Х Х Ζ Х н Х Ζ Х н Х Ζ L Т L L L I. L L H = HIGH Voltage Level L = LOW Voltage Level Z = High Impedance † = Inactive-to-active transition must occur to enable outputs upon X = Immaterial power-up. **Block Diagrams** Byte A TYPE 1 BSR 41 AOE1 TYPE2 BSR 39 TYPE 1 BSR 40 AOE INSTRUCTION 3-STATE -NON-INVERTING BUFFER TYPE 1 TYPE2 BSR 27-35 BSR 9-17 AI[0-8] AO [0-8] Tap Controller TO BSR[41] FROM BSR [0] IDCODE REGISTER BYPASS REGISTER TDI INSTRUCTION REGISTER TDO INSTRUCTION 3-STATE TEST TMS ACCES PORT TCK (TAP) Byte B NON-INVERTING BUFFER TYPE 1 TYPE2 BSR 18-26 BSR 0-8 BI [0-8] •B0 [0-8] TYPE1 INSTRUCTION 3-STATE-BSR 38 BOE<sub>1</sub> TYPE2 BSR 36 TYPE1 BSR 37 BOE<sub>2</sub> Note: BSR stands for Boundary Scan Register.

www.fairchildsemi.com

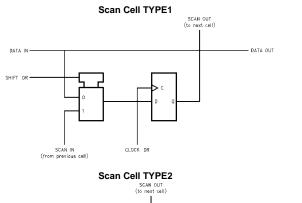

2

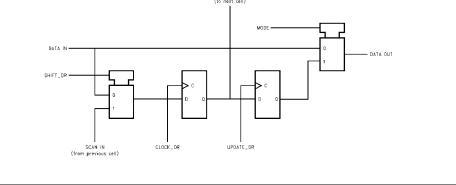
#### **Description of BOUNDARY-SCAN Circuitry**

The scan cells used in the BOUNDARY-SCAN register are one of the following two types depending upon their location. Scan cell TYPE1 is intended to solely observe system data, while TYPE2 has the additional ability to control system data.


Scan cell TYPE1 is located on each system input pin while scan cell TYPE2 is located at each system output pin as well as at each of the two internal active-high output enable signals. AOE controls the activity of the A-outputs while BOE controls the activity of the B-outputs. Each will activate their respective outputs by loading a logic high.

The BYPASS register is a single bit shift register stage identical to scan cell TYPE1. It captures a fixed logic low.

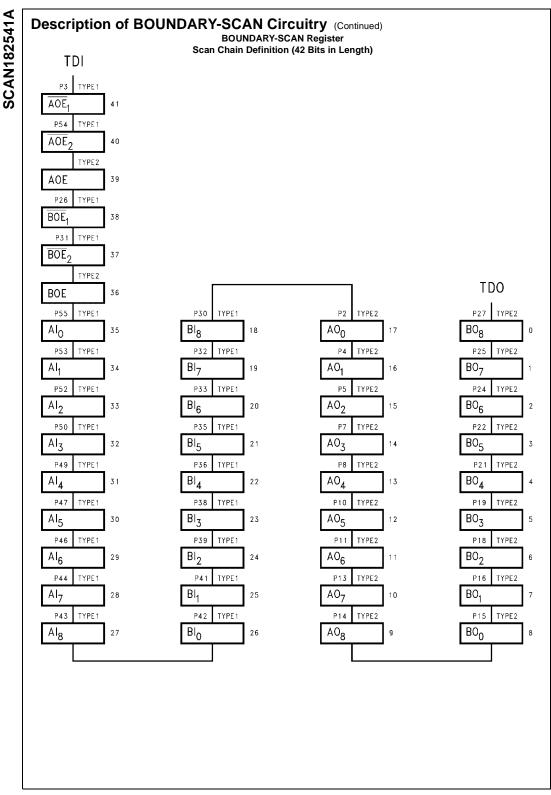




| Version | Entity | Part           | Manufacture<br>r | Required b<br>y |
|---------|--------|----------------|------------------|-----------------|
|         |        | Number         | ID               | 1149.1          |
| 0000    | 111111 | 000000100<br>1 | 00000001111      | 1               |
| MSB     |        |                |                  | LSB             |

The INSTRUCTION register is an 8-bit register which captures the default value of 10000001 (SAMPLE/PRELOAD) during the CAPTURE-IR instruction command. The benefit of capturing SAMPLE/PRELOAD as the default instruction during CAPTURE-IR is that the user is no longer required to shift in the 8-bit instruction for SAMPLE/PRELOAD. The sequence of: CAPTURE-IR $\rightarrow$ EXIT1-IR $\rightarrow$  UPDATE-IR will update the SAMPLE/PRELOAD instruction. For more information refer to the section on instruction definitions.

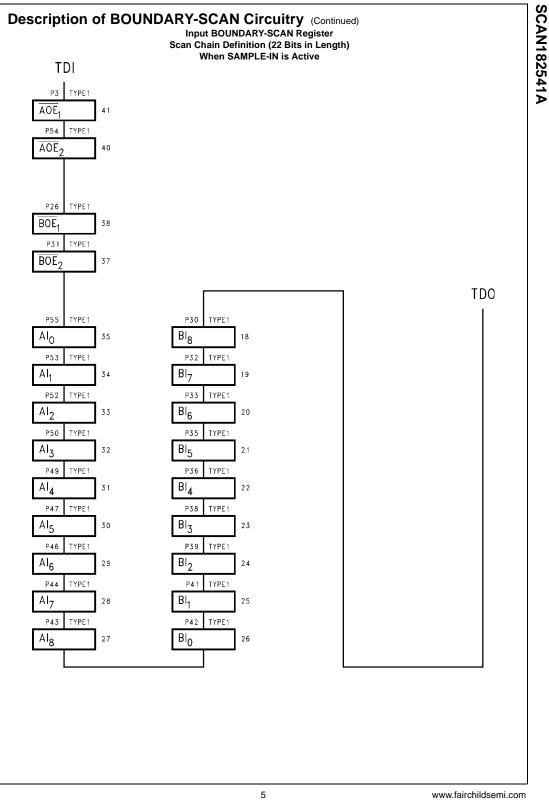


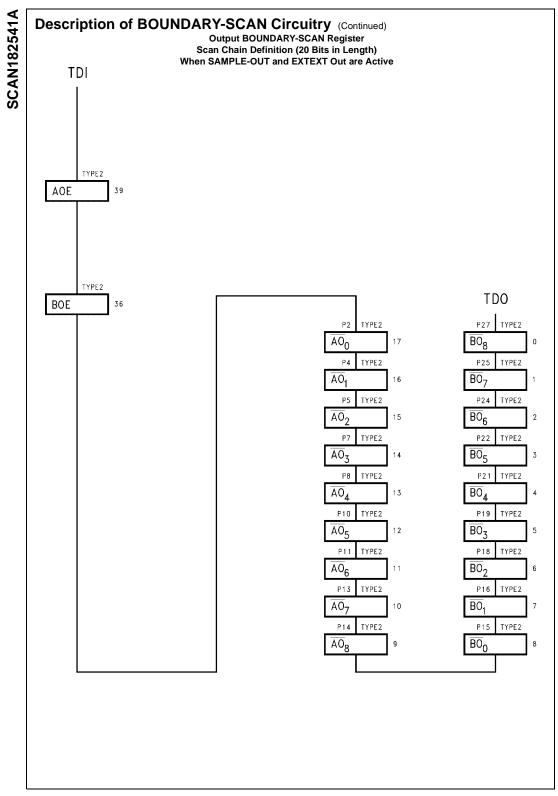
| Instruction Code | Instruction    |
|------------------|----------------|
| 00000000         | EXTEST         |
| 1000001          | SAMPLE/PRELOAD |
| 10000010         | CLAMP          |
| 00000011         | HIGH-Z         |
| 01000001         | SAMPLE-IN      |
| 01000010         | SAMPLE-OUT     |
| 00100010         | EXTEST-OUT     |
| 10101010         | IDCODE         |
| 1111111          | BYPASS         |
| All Others       | BYPASS         |






3


www.fairchildsemi.com


# SCAN182541A



www.fairchildsemi.com

4





|         |                  |         | gister Definition I |        |          |
|---------|------------------|---------|---------------------|--------|----------|
| Bit No. | Pin Name         | Pin No. | Pin Type            | Scan C | ell Type |
| 41      | AOE <sub>1</sub> | 3       | Input               | TYPE1  |          |
| 40      | AOE <sub>2</sub> | 54      | Input               | TYPE1  |          |
| 39      | AOE              |         | Internal            | TYPE2  | Contro   |
| 38      | BOE <sub>1</sub> | 26      | Input               | TYPE1  | Signal   |
| 37      | BOE <sub>2</sub> | 31      | Input               | TYPE1  |          |
| 36      | BOE              |         | Internal            | TYPE2  |          |
| 35      | Al <sub>0</sub>  | 55      | Input               | TYPE1  |          |
| 34      | Al <sub>1</sub>  | 53      | Input               | TYPE1  |          |
| 33      | Al <sub>2</sub>  | 52      | Input               | TYPE1  |          |
| 32      | Al <sub>3</sub>  | 50      | Input               | TYPE1  |          |
| 31      | Al <sub>4</sub>  | 49      | Input               | TYPE1  | A–in     |
| 30      | AI <sub>5</sub>  | 47      | Input               | TYPE1  |          |
| 29      | Al <sub>6</sub>  | 46      | Input               | TYPE1  |          |
| 28      | Al <sub>7</sub>  | 44      | Input               | TYPE1  |          |
| 27      | Al <sub>8</sub>  | 43      | Input               | TYPE1  |          |
| 26      | BI <sub>0</sub>  | 42      | Input               | TYPE1  |          |
| 25      | BI <sub>1</sub>  | 41      | Input               | TYPE1  |          |
| 24      | Bl <sub>2</sub>  | 39      | Input               | TYPE1  |          |
| 23      | Bl <sub>3</sub>  | 38      | Input               | TYPE1  |          |
| 22      | Bl <sub>4</sub>  | 36      | Input               | TYPE1  | B–in     |
| 21      | BI <sub>5</sub>  | 35      | Input               | TYPE1  |          |
| 20      | BI <sub>6</sub>  | 33      | Input               | TYPE1  |          |
| 19      | BI <sub>7</sub>  | 32      | Input               | TYPE1  |          |
| 18      | BI <sub>8</sub>  | 30      | Input               | TYPE1  |          |
| 17      | AO <sub>0</sub>  | 2       | Output              | TYPE2  |          |
| 16      | AO <sub>1</sub>  | 4       | Output              | TYPE2  |          |
| 15      | AO <sub>2</sub>  | 5       | Output              | TYPE2  |          |
| 14      | AO <sub>3</sub>  | 7       | Output              | TYPE2  |          |
| 13      | AO <sub>4</sub>  | 8       | Output              | TYPE2  | A–out    |
| 12      | AO <sub>5</sub>  | 10      | Output              | TYPE2  |          |
| 11      | AO <sub>6</sub>  | 11      | Output              | TYPE2  |          |
| 10      | AO <sub>7</sub>  | 13      | Output              | TYPE2  |          |
| 9       | AO <sub>8</sub>  | 14      | Output              | TYPE2  |          |
| 8       | BO <sub>0</sub>  | 15      | Output              | TYPE2  |          |
| 7       | BO <sub>1</sub>  | 16      | Output              | TYPE2  |          |
| 6       | BO <sub>2</sub>  | 18      | Output              | TYPE2  |          |
| 5       | BO <sub>3</sub>  | 19      | Output              | TYPE2  |          |
| 4       | BO <sub>4</sub>  | 21      | Output              | TYPE2  | B-out    |
| 3       | BO <sub>5</sub>  | 22      | Output              | TYPE2  |          |
| 2       | BO <sub>6</sub>  | 24      | Output              | TYPE2  |          |
| 1       | BO <sub>7</sub>  | 25      | Output              | TYPE2  |          |
| 0       | BO <sub>8</sub>  | 27      | Output              | TYPE2  |          |

# SCAN182541A

#### Absolute Maximum Ratings(Note 1)

|                                      | -                                    |
|--------------------------------------|--------------------------------------|
| Storage Temperature                  | -65°C to +150°C                      |
| Ambient Temperature under Bias       | -55°C to +125°C                      |
| Junction Temperature under Bias      | -55°C to +150°C                      |
| $V_{CC}$ Pin Potential to Ground Pin | -0.5V to +7.0V                       |
| Input Voltage (Note 2)               | -0.5V to +7.0V                       |
| Input Current (Note 2)               | -30 mA to +5.0 mA                    |
| Voltage Applied to Any Output        |                                      |
| in Disabled or Power-Off State       | -0.5V to +5.5V                       |
| in the HIGH State                    | -0.5V to V <sub>CC</sub>             |
| Current Applied to Output            |                                      |
| in LOW State (Max)                   | Twice the Rated I <sub>OL</sub> (mA) |
| DC Latchup Source Current            | –500 mA                              |
| Over Voltage Latchup (I/O)           | 10V                                  |
| EDS (HBM) Min.                       | 2000V                                |
|                                      |                                      |

## Recommended Operating Conditions

| Free Air Ambient Temperature | $-40^{\circ}C$ to $+85^{\circ}C$ |
|------------------------------|----------------------------------|
| Supply Voltage               | +4.5V to +5.5V                   |
| Minimum Input Edge Rate      | $(\Delta V / \Delta t)$          |
| Data Input                   | 50 mV/ns                         |
| Enable Input                 | 20 mV/ns                         |

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

### **DC Electrical Characteristics**

| Symbol                             | Paramete                          | er               | v <sub>cc</sub> | Min  | Тур | Мах  | Units | Conditions                         |
|------------------------------------|-----------------------------------|------------------|-----------------|------|-----|------|-------|------------------------------------|
| / <sub>IH</sub>                    | Input HIGH Voltage                |                  |                 | 2.0  |     |      | V     | Recognized HIGH Signal             |
| V <sub>IL</sub>                    | Input LOW Voltage                 |                  |                 |      |     | 0.8  | V     | Recognized LOW Signal              |
| V <sub>CD</sub>                    | Input Clamp Diode Volta           | ge               | Min             |      |     | -1.2 | V     | I <sub>IN</sub> = -18 mA           |
| V <sub>OH</sub>                    | Output HIGH Voltage               |                  | Min             | 2.5  |     |      | V     | $I_{OH} = -3 \text{ mA}$           |
|                                    |                                   |                  | Min             | 2.0  |     |      | V     | $I_{OH} = -32 \text{ mA}$          |
| V <sub>OL</sub>                    | Output LOW Voltage                |                  | Min             |      |     | 0.8  | V     | I <sub>OL</sub> = 15 mA            |
| Ін                                 | Input HIGH Current                | All Others       | Max             |      |     | 5    | μA    | V <sub>IN</sub> = 2.7V (Note 3)    |
|                                    |                                   | All Others       | Max             |      |     | 5    | μA    | $V_{IN} = V_{CC}$                  |
|                                    |                                   | TMS, TDI         | Max             |      |     | 5    | μA    | $V_{IN} = V_{CC}$                  |
| I <sub>BVI</sub>                   | Input HIGH Current Breakdown Test |                  | Max             |      |     | 7    | μA    | V <sub>IN</sub> = 7.0V             |
| I <sub>BVIT</sub>                  | Input HIGH Current Brea           | kdown Test (I/O) | Max             |      |     | 100  | μA    | $V_{IN} = 5.5V$                    |
| IIL                                | Input LOW Current                 |                  | Max             |      |     | -5   | μA    | V <sub>IN</sub> = 0.5V (Note 3)    |
|                                    |                                   | All Others       | Max             |      |     | -5   | μA    | $V_{IN} = 0.0V$                    |
|                                    |                                   | TMS, TDI         | Max             |      |     | -385 | μA    | $V_{IN} = 0.0V$                    |
| V <sub>ID</sub>                    | Input Leakage Test                |                  | 0.0             | 4.75 |     |      | V     | $I_{ID} = 1.9 \ \mu A$             |
|                                    |                                   |                  |                 |      |     |      |       | All Other Pins Grounded            |
| I <sub>IH</sub> + I <sub>OZH</sub> | Output Leakage Current            |                  | Max             |      |     | 50   | μA    | $V_{OUT} = 2.7V$                   |
| I <sub>IL</sub> + L <sub>OZL</sub> | Output Leakage Current            |                  | Max             |      |     | -50  | μA    | $V_{OUT} = 0.5V$                   |
| I <sub>OZH</sub>                   | Output Leakage Current            |                  | Max             |      |     | 50   | μA    | V <sub>OUT</sub> = 2.7V            |
| l <sub>ozl</sub>                   | Output Leakage Current            |                  | Max             |      |     | -50  | μA    | $V_{OUT} = 0.5V$                   |
| I <sub>OS</sub>                    | Output Short-Circuit Curr         | rent             | Max             | -100 |     | -275 | mA    | $V_{OUT} = 0.0V$                   |
| I <sub>CEX</sub>                   | Output HIGH Leakage C             | urrent           | Max             |      |     | 50   | μA    | V <sub>OUT</sub> = V <sub>CC</sub> |
| I <sub>ZZ</sub>                    | Bus Drainage Test                 |                  | 0.0             |      |     | 100  | μA    | $V_{OUT} = 5.5V$                   |
|                                    |                                   |                  |                 |      |     |      |       | All Others Grounded                |

| Symbol           | Param                             | eter             | v <sub>cc</sub> | Min | Тур | Max  | Units | Conditions                               |
|------------------|-----------------------------------|------------------|-----------------|-----|-----|------|-------|------------------------------------------|
| I <sub>CCH</sub> | Power Supply Current              |                  | Max             |     |     | 250  | μΑ    | $V_{OUT} = V_{CC}$ ; TDI, TMS = $V_{CC}$ |
|                  |                                   |                  | Max             |     |     | 1.0  | mA    | $V_{OUT} = V_{CC}$ ; TDI, TMS = GND      |
| I <sub>CCL</sub> | Power Supply Current              |                  | Max             |     |     | 65   | mA    | $V_{OUT} = LOW; TDI, TMS = V_{CC}$       |
|                  |                                   |                  | Max             |     |     | 65.8 | mA    | $V_{OUT} = LOW; TDI, TMS = GND$          |
| I <sub>CCZ</sub> | Power Supply Current              |                  | Max             |     |     | 250  | μΑ    | TDI, TMS = $V_{CC}$                      |
|                  |                                   |                  | Max             |     |     | 1.0  | mA    | TDI, TMS = GND                           |
| I <sub>CCT</sub> | Additional I <sub>CC</sub> /Input | All Other Inputs | Max             |     |     | 2.9  | mA    | $V_{IN} = V_{CC} - 2.1V$                 |
|                  |                                   | TDI, TMS Inputs  | Max             |     |     | 3    | mA    | $V_{IN} = V_{CC} - 2.1V$                 |
| ICCD             | Dynamic I <sub>CC</sub>           | No Load          | Max             |     |     | 0.2  | mA/   | Outputs Open                             |
|                  |                                   |                  |                 |     |     |      | MHz   | One Bit Toggling, 50% Duty Cyc           |

Note 3: Guaranteed not tested.

## AC Electrical Characteristics

|                  |                                               | V <sub>cc</sub> | TA  | = -40°C to +8   | 35°C |      |
|------------------|-----------------------------------------------|-----------------|-----|-----------------|------|------|
| Symbol           | Parameter                                     | (V)             |     | $C_L = 50 \ pF$ |      | Unit |
|                  |                                               | (Note 4)        | Min | Тур             | Max  |      |
| t <sub>PLH</sub> | Propagation Delay                             | 5.0             | 1.0 | 3.4             | 5.2  | ns   |
| t <sub>PHL</sub> | Data to Q                                     |                 | 1.9 | 4.1             | 6.5  | 113  |
| t <sub>PLZ</sub> | Disable Time                                  | 5.0             | 2.0 | 5.2             | 8.7  | ns   |
| t <sub>PHZ</sub> |                                               |                 | 1.9 | 5.6             | 9.2  | 113  |
| t <sub>PZL</sub> | Enable Time                                   | 5.0             | 2.4 | 6.1             | 9.6  | ns   |
| t <sub>PZH</sub> |                                               |                 | 1.6 | 5.1             | 8.5  | 110  |
| t <sub>PLH</sub> | Propagation Delay                             | 5.0             | 3.2 | 6.0             | 9.4  | ns   |
| t <sub>PHL</sub> | TCK to TDO                                    |                 | 4.5 | 7.6             | 11.3 | 116  |
| t <sub>PLZ</sub> | Disable Time                                  | 5.0             | 2.5 | 5.8             | 9.9  |      |
| t <sub>PHZ</sub> | TCK to TDO                                    |                 | 3.7 | 7.4             | 11.8 | ns   |
| t <sub>PZL</sub> | Enable Time                                   | 5.0             | 4.9 | 8.6             | 12.9 |      |
| t <sub>PZH</sub> | TCK to TDO                                    |                 | 3.1 | 6.7             | 10.7 | ns   |
| t <sub>PLH</sub> | Propagation Delay                             |                 | 3.7 | 6.7             | 10.3 |      |
| t <sub>PHL</sub> | TCK to Data Out during Update-DR State        | 5.0             | 4.9 | 8.3             | 12.4 | n    |
| t <sub>PLH</sub> | Propagation Delay                             |                 | 4.2 | 7.9             | 12.2 |      |
| t <sub>PHL</sub> | TCK to Data Out during Update-IR State        | 5.0             | 5.3 | 9.2             | 13.8 | n    |
| t <sub>PLH</sub> | Propagation Delay                             |                 | 5.0 | 9.4             | 14.6 |      |
| t <sub>PHL</sub> | TCK to Data Out during Test Logic Reset State | 5.0             | 6.2 | 10.9            | 16.4 | ns   |
| t <sub>PLZ</sub> | Disable Time                                  |                 | 3.7 | 7.9             | 13.0 |      |
| t <sub>PHZ</sub> | TCK to Data Out during Update-DR State        | 5.0             | 4.3 | 8.7             | 13.7 | ns   |
| t <sub>PLZ</sub> | Disable Time                                  |                 | 3.7 | 8.5             | 14.2 |      |
| t <sub>PHZ</sub> | TCK to Data Out during Update-IR State        | 5.0             | 4.3 | 9.4             | 14.8 | ns   |
| t <sub>PLZ</sub> | Disable Time                                  |                 | 4.7 | 10.1            | 16.6 |      |
| t <sub>PHZ</sub> | TCK to Data Out during Test Logic Reset State | 5.0             | 5.5 | 10.9            | 17.3 | ns   |
| t <sub>PZL</sub> | Enable Time                                   |                 | 5.5 | 9.8             | 14.7 |      |
| t <sub>PZH</sub> | TCK to Data Out during Update-DR State        | 5.0             | 4.0 | 7.9             | 12.5 | n    |
| t <sub>PZL</sub> | Enable Time                                   |                 | 5.8 | 10.9            | 16.5 |      |
| t <sub>PZH</sub> | TCK to Data Out during Update-IR State        | 5.0             | 4.3 | 9.0             | 14.4 | n    |
| t <sub>PZL</sub> | Enable Time                                   |                 | 6.6 | 12.5            | 19.1 |      |
| t <sub>PZH</sub> | TCK to Data Out during Test Logic Reset State | 5.0             | 4.9 | 10.5            | 16.9 | ns   |

SCAN182541A

SCAN182541A

|                |                                                         | v <sub>cc</sub> | $T_A = -40^{\circ}C$ to $+85^{\circ}C$ |       |
|----------------|---------------------------------------------------------|-----------------|----------------------------------------|-------|
| Symbol         | Parameter                                               | (V)             | $C_L = 50 \text{ pF}$                  | Units |
|                |                                                         | (Note 5)        | Guaranteed Minimum                     |       |
| t <sub>S</sub> | Setup Time                                              | 5.0             | 2.2                                    | ns    |
|                | Data to TCK (Note 6)                                    | 5.0             | 2.2                                    | ns    |
| t <sub>H</sub> | Hold Time                                               | 5.0             | 1.8                                    | ns    |
|                | Data to TCK (Note 6)                                    | 5.0             | 1.0                                    | 115   |
| t <sub>S</sub> | Setup Time, H or L                                      | 5.0             | 3.7                                    | ns    |
|                | AOE <sub>n</sub> , BOE <sub>n</sub> to TCK (Note 7)     | 5.0             | 0.1                                    | 113   |
| t <sub>H</sub> | Hold Time, H or L                                       | 5.0             | 1.8                                    | ns    |
|                | TCK to $\overline{AOE}_n$ , $\overline{BOE}_n$ (Note 7) | 5.0             | 1.0                                    | 113   |
| t <sub>S</sub> | Setup Time, H or L                                      |                 |                                        |       |
|                | Internal AOE <sub>n</sub> , BOE <sub>n</sub> ,          | 5.0             | 2.7                                    | ns    |
|                | to TCK (Note 8)                                         |                 |                                        |       |
| t <sub>H</sub> | Hold Time, H or L                                       |                 |                                        |       |
|                | TCK to Internal                                         | 5.0             | 1.8                                    | ns    |
|                | AOE <sub>n</sub> , BOE <sub>n</sub> (Note 8)            |                 |                                        |       |
| t <sub>S</sub> | Setup Time, H or L                                      | 5.0             | 7.5                                    | ns    |
|                | TMS to TCK                                              | 5.0             | 1.5                                    | 115   |
| t <sub>H</sub> | Hold Time, H or L                                       | 5.0             | 1.8                                    | ns    |
|                | TCK to TMS                                              | 5.0             | 1.0                                    | 115   |
| t <sub>S</sub> | Setup Time, H or L                                      | 5.0             | 5.0                                    | 20    |
|                | TDI to TCK                                              | 5.0             | 0.0                                    | ns    |
| t <sub>H</sub> | Hold Time, H or L                                       | 5.0             | 2.0                                    | ns    |
|                | TCK to TDI                                              | 5.0             | 2.0                                    | 115   |

 t<sub>DN</sub>
 Power Down Delay

 Note 5: Voltage Range 5.0V ± 0.5V

Pulse Width TCK

Note 6: This delay represents the timing relationship between the data input and TCK at the associated scan cells numbered 0-8, 9-17, 18-26 and 27-35.

Н

L

Note 7: Timing pertains to BSR 38 and 41 or BSR 37 and 40.

Maximum TCK Clock Frequency

Wait Time, Power Up to TCK

Note 8: This delay represents the timing relationship between AOE/BOE and TCK for scan cells 36 and 39 only.

Note: All Input Timing Delays involving TCK are measured from the rising edge of TCK.

#### Capacitance

t<sub>W</sub>

 $\mathbf{f}_{\mathsf{MAX}}$ 

t<sub>PU</sub>

| Symbol           | Parameter                   | Тур  | Units | Conditions, T <sub>A</sub> = 25°C |
|------------------|-----------------------------|------|-------|-----------------------------------|
| C <sub>IN</sub>  | Input Capacitance           | 5.8  | pF    | $V_{CC} = 0.0V$                   |
| C <sub>OUT</sub> | Output Capacitance (Note 9) | 13.8 | pF    | $V_{CC} = 5.0V$                   |

5.0

5.0

5.0

0.0

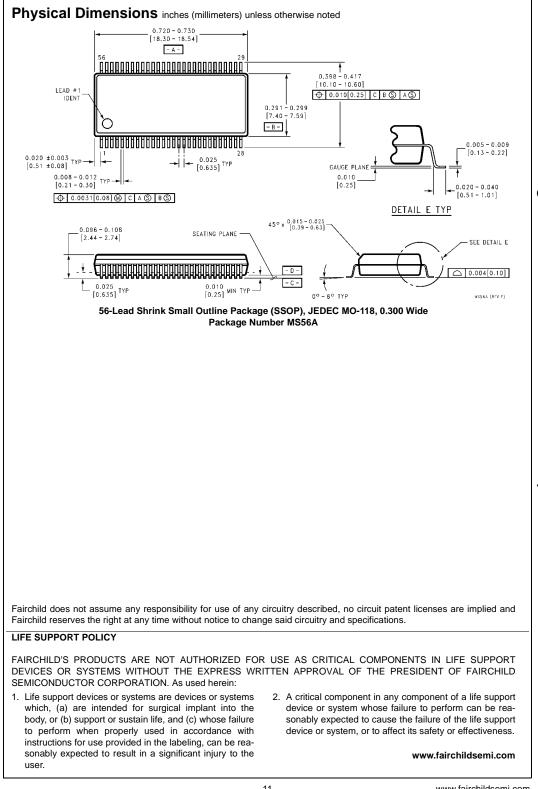
10.0

10.8

50

100

100


ns

MHz

ns

ms

Note 9: C<sub>OUT</sub> is measured at frequency f = 1 MHz, per MIL-STD-883B, Method 3012.



11